Carlos Estrela & Jesus Djalma Pécora

4. MECANISMO DE AÇÃO DO HIDRÓXIDO DE CÁLCIO

A partir do conhecimento das características da citologia  bacteriana e da dinâmica química do hidróxido de cálcio, pode-se discutir o mecanismo de ação deste fármaco sobre as bactérias e os tecidos.

O fundamento básico para a seleção de qualquer medicação intracanal é o conhecimento do mecanismo de ação desta sobre os microrganismos predominantes nas infecções do canal radicular e lesão periapical. De modo geral, os antibióticos promovem dois tipos de efeitos sobre a bactéria, inibem o crescimento ou a reprodução, ou conduzem à  morte. Estes efeitos são exercidos essencialmente por interferir na síntese da parede celular, alterar a permeabilidade da membrana citoplasmática, interferir na síntese proteica ou na replicação cromossômica. Nesta linha de pensamento, poderia se questionar em que localidade da bactéria o hidróxido de cálcio exerce seu efeito. Ao adotar como referência o conhecimento farmacológico do efeito do antibiótico sobre a bactéria, e mais especificamente o sítio de ação, o fenômeno do mecanismo de ação do hidróxido de cálcio como antimicrobiano poderia ser melhor elucidado. Por esta razão é importante analisar isoladamente o efeito do pH sobre o crescimento, o metabolismo e a divisão celular bacteriana (ESTRELA et al., 1995).

A variação do pH  reflete no crescimento bacteriano, uma vez que influencia a atividade enzimática. A velocidade das reações químicas favorecidas pelas enzimas é influenciada pelo substrato. Estas enzimas podem estar presentes tanto extra como intracelularmente. As enzimas extracelulares atuam sobre os nutrientes, carboidratos, proteínas e lipídeos, que por meio das hidrolases favorecem a digestão. As enzimas localizadas na membrana citoplasmática estão relacionadas com o transporte de substâncias para dentro e para fora da célula, com a atividade respiratória, e com a estruturação da parede celular. O transporte pela membrana é fundamental, pois, para suas complexas reações metabólicas, crescimento e reprodução, há necessidade do controle do fluxo de nutrientes (BAZIN & PROSSER, 1988; NEIDHART, 1990; NISENGARD & NEWMAN, 1994).

KODUKULA et al. (1988) relatam que em condições de elevado pH (baixa concentração de íons H+ ), a atividade enzimática das bactérias é inibida. Aliado a este fato, cada enzima possui um pH ótimo para a sua ação, segundo o qual reage com uma velocidade máxima. O pH interno das bactérias é diferente do pH externo, sendo que, internamente, seu valor oscila em torno da neutralidade. Aliás, o mecanismo que mantém essa neutralidade ainda é desconhecido. Acrescido a este fato, a diferença do pH interior e exterior da célula pode determinar o mecanismo através do qual a atividade celular é influenciada pela concentração de íons hidrogênio.

Considera-se, todavia, a existência de um gradiente de pH através da membrana citoplasmática, que é responsável por produzir energia para o transporte de nutrientes e componentes orgânicos para o interior da célula. Este gradiente pode ser afetado pela mudança no pH do meio, influenciando o transporte químico através da membrana.

Neste particular, o efeito do pH sobre o transporte químico pode ser direto ou indireto. Será direto quando o pH influenciar a atividade específica das proteínas da membrana (combinação com grupo químico específico). O efeito indireto pode levar a alterações dos estados de ionização dos nutrientes orgânicos. Os componentes não ionizados são muito mais facilmente transportados através da membrana celular do que os ionizados. Desta forma, conforme o pH, pode haver aumento da disponibilidade de nutrientes, e um intenso transporte pode induzir inibição e efeitos tóxicos sobre a célula (KODUKULA et al., 1988).

O crescimento bacteriano em pH inferior ao seu pH interno faz com que o citoplasma fique mais alcalino do que o meio, no entanto, quando o crescimento ocorre em pH alto, seu citoplsma fica mais ácido (NEIDHART, 1990). O crescimento bacteriano em pH elevado pode levar a complicações fisiológicas muito complexas.

Importa enfatizar que a membrana citoplasmática relaciona-se a três funções essenciais: metabolismo, crescimento e divisão celular. Além do mais, participa dos últimos estágios da formação da parede celular, participa da biossíntese de lipídios, transporte de elétrons, como enzimas envolvidas no processo de fosforilação oxidativa. Por conseguinte, o transporte de nutrientes e o retorno de seus catabólitos através de sua membrana, deve ser naturalmente realizado.

No que diz respeito ao pH, existem poucas espécies que, em pH menor  que 2 ou maior  que 10, podem crescer. A maioria das bactérias patogênicas cresce melhor em meio neutro. Assim, de acordo com o pH ideal ao crescimento, estas bactérias podem ser classificadas em três categorias: acidófilas, neutrófilas e alcalófilas (NOLTE, 1982).

É possível haver uma inativação enzimática reversível (temporária), quando colocada em pH acima ou abaixo do ideal para seu funcionamento, uma vez que recolocada em pH ideal,  a enzima pode tornar a adquirir sua atividade catalítica. Sua irreversibilidade pode ser observada em condições extremas de pH, por longos períodos de tempo, promovendo a total perda da atividade biológica.

Quase todas as duas mil enzimas já identificadas são proteínas globulares. Outras proteínas globulares funcionam como transportadoras de oxigênio, de nutrientes e de íons no sangue. Algumas são anticorpos, outras hormônios, e outras componentes das membranas e ribossomos. A estrutura terciária de uma proteína globular depende da sua sequência de aminoácidos, e vem, de alguns experimentos  a demonstração que a desnaturação de algumas proteínas é reversível. Valores extremos de pH causam o desenrolamento da maioria das proteínas globulares e a perda de suas atividades biológicas sem romper ligações covalentes no esqueleto polipeptídico. Por vários anos, pensou-se ser irreversível o processo de desnaturação das proteínas. Entretanto, demonstrou-se que algumas proteínas globulares desnaturadas em decorrência do pH readquirem sua estrutura nativa e sua atividade biológica, desde que o pH retorne a valor normal, sendo este processo denominado  renaturação (LEHNINGER, 1986).

Sabe-se, pois, que a configuração tridimensional nativa de uma dada proteína é sua configuração mais estável em condições biológicas de temperatura e pH, e que essa configuração é consequência automática de sua sequência específica de aminoácidos (AMABIS et al., 1976; JUNQUEIRA & CARNEIRO, 1991).

Várias proteínas presentes na superfície da membrana celular são especializadas no transporte de ácidos e bases pela membrana. A regulação de pH celular é fundamental, uma vez que mudanças de pH podem desgovernar e afetar o metabolismo celular, atuando na ionização de grupos de proteínas pela desconfiguração e alteração das suas atividades. O metabolismo celular, depende do pH para a atividade enzimática, altera o substrato e afeta o crescimento e a proliferação celular.

PUTNAM (1995) descrevendo a regulação de pH intracelular, relata que o pH influencia diferentes processos celulares, como: a) metabolismo celular; b) citoesqueleto, podendo alterar a forma, a motilidade, a regulação de transportadores, a polimerização de elementos; c) ativação de crescimento e proliferação celular; d) condutibilidade e transporte através da membrana; e) volume celular isosmótico. Desta forma, muitas funções celulares podem ser afetadas pelo pH, dentre estas as enzimas essenciais ao metabolismo celular.

O transporte químico na membrana celular pode ser alterado pela quantidade de íons hidroxila presentes, por um processo de peroxidação lipídica. A perda da integridade da membrana pode ser observada através da destruição de ácidos graxos insaturados ou fosfolipídios. Quando íons hidroxila removem átomos de hidrogênio de ácidos graxos insaturados, forma-se um radical lipídico livre que reage com o oxigênio molecular, transformando-se em outro radical peróxido lipídico. A peroxidação lipídica pode ser formada novamente a partir de um novo indutor, íons hidroxila, que roubam átomos de hidrogênio de um segundo ácido graxo insaturado, resultando em outro peróxido lipídico e outro novo radical lipídico livre, transformando em uma reação em cadeia (RUBIN & FARBER, 1990).

Frente a todo o raciocínio descrito de processos e atividades isoladas do pH em sítios enzimáticos essenciais, como acontece a nível de membrana, torna-se mais esclarecedor associar o hidróxido de cálcio, substância dotada de elevado pH, a efeitos biológicos lesivos sobre a célula bacteriana para explicar seu mecanismo de ação. Com esta finalidade ESTRELA et al. (1994) estudaram o efeito biológico do pH na atividade enzimática de bactérias anaeróbias. Como a localização dos sítios enzimáticos é na membrana citoplasmática, e por esta ser responsável por funções essenciais, como o metabolismo, crescimento e divisão celular, e participar dos últimos estágios da formação da parede celular, biossíntese de lipídios, transporte de elétrons, como enzimas envolvidas no processo de fosforilação oxidativa, os autores acreditam que os íons hidroxila do hidróxido de cálcio desenvolvem seu mecanismo de ação a nível da membrana citoplasmática. O efeito do elevado pH do hidróxido de cálcio (12.6), influenciado pela liberação de íons hidroxila, é capaz de alterar a integridade da membrana citoplasmática através de injúrias químicas aos componentes orgânicos e transporte de nutrientes, ou por meio da destruição de fosfolipídios ou ácidos graxos insaturados da membrana citoplasmática, observado pelo processo de peroxidação lipídica, sendo esta na realidade, uma reação de saponificação (ESTRELA et al., 1995).

A explicação do mecanismo de ação do pH do hidróxido de cálcio no controle da atividade enzimatica bacteriana, permitiu que ESTRELA et al. (1994) levantassem a hipótese de uma inativação enzimática bacteriana irreversível, em condições extremas de pH, em longos períodos de tempo. E, também, uma inativação enzimática bacteriana temporária, quando do retorno do pH ideal à ação enzimática, havendo volta à sua atividade normal. A inativação enzimática irreversível foi demonstrada por ESTRELA et al. (1997) que determinaram in vitro o efeito antimicrobiano direto do hidróxido de cálcio sobre diferentes microrganismos (Micrococcus luteus (ATCC 9341); Staphylococcus aureus (ATCC6538); Pseudomonas aeruginosa (ATCC 27853); Fusobacterium nucleatum (ATCC 25586); Escherichia coli e Streptococcus sp.), durante intervalos de 0, 1, 2, 6, 12, 24, 48, 72 horas e 7 dias. A alteração da integridade da membrana citoplasmática dos microrganismos analisados, favorecendo suas destruições, tanto em culturas puras quanto em misturas, ocorreu no período de 72 horas. A inativação enzimática reversível pode ser observada em outra pesquisa realizada por ESTRELA et al. (1997), que avaliaram o efeito antimicrobiano indireto do hidróxido de cálcio em túbulos  dentinários infectados por diferentes microrganismos, em intervalos de tempo de 0, 48, 72 horas e 7 dias. Os resultados mostrararm que o hidróxido de cálcio foi inefetivo por ação à distância (ação indireta) no período de 7 dias, contra os microrganismos (Streptococcus faecalis (ATCC 29212); Staphylococcus aures (ATCC 6538); Pseudomonas aeruginosa (ATCC 27853) e Bacillus subtilis (ATCC 6633).

Alem destas pesquisas que confirmam a hipótese levantada, ESTRELA et al. (1995,1997), estudando a difusão dentinária de íons hidroxila do hidróxido de cálcio, observaram que a mudança de pH na superfície da massa dentinária pode demorar.

A hidrossolubilidade ou não do veículo empregado (diferença de viscosidade), a característica ácido-base, a maior ou menor permeabilidade dentinária, o grau de calcificação presente podem influenciar a velocidade de difusão de íons hidroxila.

Outra forma de ação antimicrobiana do hidróxido de cálcio foi demonstrada por SAFAVI & NICHOLS (1993, 1994) e BARTHEL et al. (1996). SAFAVI & NICHOLS (1993), estudando o efeito do hidróxido de cálcio sobre o lipopolissacarídeo (LPS) bacteriano, demonstraram que os íons hidroxila podem hidrolisar o LPS presente na parede celular das bactérias, degradando o lipídio A e neutralizando seu efeito residual após a lise celular.

O lipopolissacarídio é uma endotoxina encontrada nas bactérias Gram negativas. Além da ação demonstrada sobre o LPS, o hidróxido de cálcio inibe as enzimas da membrana citoplasmática tanto das bactérias Gram-negativas como Gram-positivas, independentemente do efeito do oxigênio sobre seu metabolismo, que as classificam em aeróbias, microaerófilas e anaeróbias.

Vários trabalhos demonstraram o efeito do hidróxido de cálcio sobre os diferentes tipos respiratórios  das bactérias, quer aeróbias, microaerófilas e anaeróbias ( HOLLAND et al., 1983; SMITH et al., 1984; BYSTROM et al., 1985; ALLARD et al., 1987; RANTA et al., 1988; QUACKEMBUSH, 1986; ESTRELA et al., 1994, 1995, 1996, 1997; SYDNEY, 1996).

Frente ao exposto, ESTRELA et al. (1994) reportaram que o hidróxido de cálcio apresenta duas expressivas propriedades enzimáticas, a de inibir enzimas bacterianas gerando efeito antimicrobiano e a de ativar enzimas teciduais, como a fosfatase alcalina, conduzindo ao efeito mineralizador.

A fosfatase alcalina é uma enzima hidrolítica (fosfo-hidrólise monoester ortofosfórica) que atua por meio da liberação de fosfato inorgânico dos estéres de fosfato (OSBORN & TEN CATE, 1988). Acredita-se na sua relação com o processo de mineralização (GRANSTROM & LINDE, 1972; GUIMARÃES & ALLE, 1974; GRANSTROM et al., 1978; GRANSTROM, 1982; MESSER et al., 1982).

O pH ótimo para a atuação da fosfatase alcalina varia de acordo com o tipo e a concentração de substrato, com a temperatura e com a fonte de enzima, sendo que os limites estão por volta de um pH 8,6  a  10,3 (THOMPSON, 1966; MOURA, 1982; GREENWOOD ; EARNSHAW, 1984).

Esta enzima pode separar os ésteres fosfóricos de modo a liberar os íons fosfatos, que ficam livres, os quais reagem com os íons cálcio (provenientes da corrente sanguínea), para formar um precipitado na matriz orgânica, o fosfato de cálcio, que é a unidade molecular da hidroxiapatita (SELTZER & BENDER, 1979).

Neste contexto, o hidróxido de cálcio ativa a fosfatase alcalina a partir de seu elevado pH, o que pode iniciar ou favorecer a mineralização (MITCHELL & SHANKWALKER, 1958; TRONSTAD et al.,1981, TRONSTAD, 1991).

Atualmente não se questiona que o hidróxido de cálcio representa a medicação intracanal mais empregada, estudada e discutida, em decorrência, principalmente, de sua ação biológica e antimicrobiana.

Desde a introdução do hidróxido de cálcio na Odontologia por HERMAN  em 1920, a ação biológica estabelecida por criar um ambiente favorável para a reparação tecidual, tem sido investigada por inúmeras pesquisas (MITCHELL & SHANKWALKER, 1958; EDA, 1961; HOLLAND, 1971, 1979, 1980, 1982, 1992; RASMUSSEN & MJOR, 1971; SOUZA et al., 1972, 1978; BINNIE & ROWE, 1973).

WebMasters: Jesus Djalma Pécora,  Danilo M. Z. Guerisoli e Carlos Estrela.
Copyright 04 de novembro de 1997.

Esta página foi elaborada com apoio do Programa Incentivo à Produção de Material Didático do SIAE - Pró-Reitorias de Graduação e Pós-Graduação da USP.
Voltar à página principal